Meet Inspiring Speakers and Experts at our 3000+ Global Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC Ltd : World’s leading Event Organizer

Conference Series LLC Ltd Conferences gaining more Readers and Visitors

Conference Series LLC Ltd Web Metrics at a Glance

  • 3000+ Global Events
  • 100 Million+ Visitors
  • 75000+ Unique visitors per conference
  • 100000+ Page views for every individual conference

Unique Opportunity! Online visibility to the Speakers and Experts

Quantum Physics 2020

About Conference

About conference:

Conference Series LLC Ltd  invites all the participants from all over the world to attend the prestigious scientific International Conference on “Quantum Mechanics and Nuclear Physics” which is to be held during August 24-25, 2020 Vancouver, Canada. It is among the World’s leading Scientific Conference which hosts scientific sessions and sub-sessions on cutting edge research and latest innovations in the field of Quantum Physics and Quantum technology across the globe. The attendees can find some exclusive sessions and panel discussions on latest originations in Physics.

Why to attend Quantum Mechanics2020?

With members from around the world focused on Quantum Physics and Quantum Technology this is your best opportunity to reach the largest assemblage of participants from the universities, colleges, research centres, societies, institutions, labs, associations, communities and companies etc. We want to make a worldwide meet in which data between researchers from the different controls can be effectively traded. The explanation behind bringing the general population at the meetings together is to catalyse empowering trades and connections between experts in different fields, from physical science to engineering. It will make new interdisciplinary systems and permit members to trade know-how and data to accomplish speedier and better results.

The field of Quantum physics and Quantum technology have not only helped the development in different fields in science and technology but also contributed towards the improvement of the quality of human life. The core aim of Quantum conference is to provide an opportunity for the delegates to meet, interact and exchange innovative ideas in the various areas of Quantum physics and its technology. The joy of attending 20 brings with it improvement and incremental growth in your approach to do things, in the broader manner to see things in international diversity.

Target Audience:

  1.  Physics Scientists
  2.  Research students and Research Institute
  3.  Professors, Students, Researchers from Physics
  4.  Managers and Business Intellect Professionals
  5.  Business Professionals from Electronic Industries
  6.  Advertising and Promotion Agency Managers
  7.  Delegates from Physical and Materials Science societies and Associations

Related Societies:

  1. American Institute of Physics (AIP)
  2. American Physical Society (APS)
  3. Australian Institute of Physics
  4. Canadian Association of Physicists
  5. Colombian Society of Physics (in Spanish)
  6. Chilean Society of Physics (in Spanish)
  7. European Physical Society
  8. European Materials Research Society (EMRS)
  9. The Egyptian Materials Research Society
  10. French Physical Society
  11. International Association of Mathematical Physics (IAMP)
  12. Institute of Particle Physics, Canada (IPP)
  13. Institute of Physics, United Kingdom
  14. International Organization of Chinese Physicists and Astronomers
  15. International Union of Crystallography
  16. International Union of Pure and Applied Physics
  17. Italian Physical Society
  18. Physical Society of Germany (DPG)
  19. Physical Society of Japan
  20. Portuguese Society of Physics
  21. Swiss Physical Society
  22. Italian Association of Physics Students
  23. The Abdus Salam International Centre for Theoretical Physics
  24. The International Liquid Crystal Society
  25. The International society for optics and photonics

Conference opportunities:

For Researchers and Faculty members:

  • Speaker presentations
  • Poster presentation
  • Symposium hosting
  • Workshop organizing

For Universities, Associations & Societies:

  • Association partnering
  • Collaboration proposals
  • Academic partnering
  • Group participation

For students and Research scholars:

  • Poster competition
  • Young Researcher Forum
  • Student attendee
  • Group registrations

For Business Delegates:

  • Speaker presentations
  • Symposium hosting
  • Book launch event
  • Networking opportunities
  • Audience participation



For Product manufacturers:

  • Exhibitor and Vendor booths
  • Sponsorship opportunities
  • Product launch
  • Workshop organization
  • Scientific partnering
  • Marketing and Networking with clients



Sessions/Tracks :

Track 1: Quantum Chemistry

A Quantum is the physical quantity that can exist freely, particularly a discrete amount of electromagnetic radiation. Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in non-equilibrium situations, and with the full inclusion of quantum effects. Fuelled by trial propels and the capability of future nanoscale applications this research effort is pursued by scientists with dissimilar backgrounds, including mesoscopic physics, statistical physics, many-body theory and quantum information theory who bring numerous tools and methods to the field. A quantum dominated state of magnetism on a two-dimensional grid with only one turn for every unit cell has been looked for a considerable length of time. Quantum Nanoscience is the branch of nanotechnology and the assessment area and Physical Science that uses strategies for quantum mechanics to the outline of new sorts of nanoscale materials and nanodevices, where usefulness and structure of quantum nanodevices are represented through quantum marvels and standards, ex. superposition, discretisation and trap.

Track 2: Quantum Field Theories

The history of quantum field theory starts with its creation by Paul Dirac. He tried to quantize the electromagnetic field in the late 1920s. Major developments in the theory were made in the 1950s, and directed to the introduction of quantum electrodynamics (QED). QED was so successful and truly predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts were successful in the utilization of gauge theory to the strong nuclear force and weak nuclear force, producing the modern standard model of particle physics. Efforts to describe gravity using the same techniques have, to date, failed. Learning of quantum field theory is still flourishing, as are applications of its methods to many physical problems. It remains one of the most vital areas of theoretical physics today, providing a common language to several different branches of physics.

 Track 3: Quantum Mechanics

Quantum mechanics is the subdivision of physics relating to the very small. At the scale of electrons and atoms, several equations of classical mechanics, which define how things move at everyday speeds and sizes, cease to be useful. In classical mechanics, the objects stay in an exact place at an exact time. However, in quantum mechanics, objects instead exist in a haze of probability; they have a certain chance of being at point A, another chance of being at point B and so on. Vital implementation of quantum theory consists of quantum superconducting magnets, chemistry, the laser and light-emitting diodes, semiconductors and the transistor such as the research, microprocessor and medical imaging such as magnetic resonance imaging and electron microscopy. Descriptions for several physical and biological phenomena are rooted in the nature of the chemical bond, most notably the macro-molecule DNA. The second quantum revolution takes profit of the phenomenon of entanglement. It's a usual phenomenon that basic researchers recognized as early as the 1930s. Until now, all the technologies you mentioned derive their utility from the wave property upon which quantum physics is based. Though, they are not perceived all things considered, quantum innovations are accordingly officially present and without them, many of our instruments would not be conceivable. The nature of entanglement has been known for past 85 years by contrast, has only been experimentally studied in the last four decades based on results by John Bell in the 1960s. Nowadays, entanglement forms the basis for various new potential applications such as quantum metrology, quantum communications and quantum computing. The second quantum revolution is usually understood to be the realization of these new possibilities.

Track 4: String Theory & Quantum Gravity

Perhaps the greatest challenge of modern theoretical physics is the quantization of the gravitational field. A consistent theory of quantum gravity seems to be required to answer questions about the early universe and the nature of black holes. A few Candidate Theories have been advanced in the course of the most recent decades. From one perspective, Superstring Theory and Super Gravity go for a unification of gravity with the other key cooperation, and have their origins in QFT. Then again, non-perturbative methodologies, for example, Loop Quantum Gravity, Spin Foams and Group Field Theory continue from essential standards of General Relativity (GR). The first core area concerns the underlying structures and symmetries of these different theories, with the aim of distilling the crucial physical and mathematical objects for the correct formulation of quantum gravity. Among the endeavors to bring together quantum theory and gravity, string theory has attracted the most attention. Its premise is simple: Everything is made of tiny strings. The strings may be closed unto themselves or have loose ends; they can vibrate, stretch, join or split. Furthermore, in these complex appearances lay the clarifications for all wonders we watch, both matter and space-time included.

Track 5: Quantum Chromodynamics

As per quantum physics attempted to enlarge into the nucleus of the atom, new strategies were required. The quantum theory of the atomic nucleus, and the particles that make it up, is called quantum chromodynamics (QCD). String theory arose out of an attempt to explain this same behavior. QED attempted to simplify the situation by only analyzing two aspects of the atom — the photon and the electron — which it could do by treating the nucleus as a giant, very distant object. The laws of subatomic physics dictate that individual quarks are never seen in the wild; they always travel around in twos or threes. At sufficiently high temperatures, however—such as those reached in a high-energy particle collider—protons and neutrons are thought to disintegrate into a soup, or plasma, of individual quarks and gluons, before cooling and recombining into ordinary matter. The small building blocks are antiquarks and quarks, in which all the stuff is built, binding together to form neutrons and protons in a procedure explained by quantum chromodynamics. Currently, scientists are searching for the existence of mesons that don't fit the traditional patterns. If a meson is found to weigh more than predictable, something else must be going on. Scientists call these hypothetical particles exotic mesons and believe that gluons play an important role in their structure.

Track 6: Quantum Condensed Matter Physics

The field of condensed matter physics discovers the microscopic and macroscopic properties of matter. Condensed Matter physicists study how matter arises from a large number of interacting atoms and electrons, and what physical properties it has as a result of these interactions. Monte Carlo techniques are effective computational instruments for studies of equilibrium properties of classical numerous molecule systems. Using a stochastic process for generating random configurations of the system degrees of freedom, such methods simulate thermal fluctuations, so that expectation values of physical observables of interest are directly obtained by averaging “measurements” on the configurations. The worldwide superconducting wire market was valued at USD 638.1 Million in 2016, and is required to develop at a CAGR of 9.6% from 2016 to 2021. The growing demand for superconductor based MRI systems, advancement in computer chip design technology, and synergies of high voltage transmission application and high efficiencies are the major factors driving the superconducting wire market. For the worldwide magnetic sensors market, the size is relied upon to achieve USD 3.65 billion by 2022 as indicated by another report by Grand View Research, Inc. Asia Pacific region dominates the global market in terms of demand and is projected to grow at a CAGR of nearly 12% over the forecast period. Existence of chief end-use industries in the region has prompted an expanding demand for such sensing modules in the region. Countries such as China, Japan, and India house most of the technological and automotive giants leading to an escalating demand over the forecast period.

Track 7: Quantum Transport

Quantum transport is now inspected with great success in other experimental platforms as cold atomic systems and photonic. The study of quantum effects on transport properties has been a precious tool to unveil fundamental properties of quantum matter. At the same time, it has been the key to the design of new nano-devices with specific functionalities. The Global Heat Transfer Market is poised to grow at a CAGR of around 9.8% over the next decade to reach approximately $4.2 billion by 2025. This report estimates and forecasts for all the segments on global along with the regional levels presented in the research scope. Europe has the largest market share for heat transfer materials, followed by North America and Asia-Pacific. Europe accounted for more than one-third of global heat transfer fluid market. The major European market is in Spain and Germany. Asia-Pacific region is expected to witness higher growth rate compared to other regions. Europe is expected to remain the market leader owing to growing industrial expansion in the region. Emerging market in India and China is expected to raise the market share of Asia-Pacific in the global heat transfer market in upcoming future. The market size is calculated based on the revenue generated through sales from all the given segments and sub segments in the research scope. The market analysis includes bottom-up and both top-down approaches for exact measures and data validation.

 Track 8: Quantum Optics

Quantum optics utilizes quantum-mechanical and semi-established material science to look at wonders including light and its joint efforts with issue at sub tiny levels. Quantum dots (QD) are very small semiconductor particles, only several nanometres in size, so small that their optical and electronic properties differ from those of larger particles. The quantum dot market is relied upon to develop at a noteworthy CAGR rate; it holds an awesome potential to various industries, for example, purchaser, healthcare among others. The quantum dots technology is used in many applications due to the technological advancement such as low energy consumption, vibrant displays. The quantum dots market is estimated to grow at a CAGR of 63.23% from 2014 to 2020, which includes an in-depth analysis of the market by product, application, material, and geography. This report depicts market drivers, trends, and challenges concerning the worldwide quantum dots market, and forecasts the market size from 2014 to 2020, based on the materials, products, geography, and applications. This worldwide report gives a point by point perspective of the market across regions, specifically – North America (the U.S., Canada, Mexico), Europe (France, Germany, the U.K., Others), Asia-Pacific (Japan, China, India, South Korea, Rest of APAC), and RoW. The competitive landscape of the market presents a very interesting picture. The market is seeing new item dispatches, huge scale joint efforts, and agreements and partnerships over the esteem chain, with a number of tier-one players around the globe. Major players in the global quantum dot market include QD Vision, Inc. (U.S.), Nanosys, Inc. (U.S.), Nanoco Group Plc. (U.K.) among many others.

Track 9: Quantum Information & Quantum Computing

Theoretically, quantum computing aids in transmission power and processing, and will be capable of solving complex problems quicker than modern classical binary supercomputers. Quantum computing technology has potential to change dynamics in commerce, military affairs and strategic balance of power. Rising investments to progress quantum computing solutions for commercial applications is expected to support growth of the Global Quantum Computing Market. The U.S. Department of Energy announced its plans to invest US$ 16 Mn, with the objective to aid in designing new materials for supercomputers in August 2016. In September 2016, the Government of Canada announced its plans to invest in The University of Waterloo's Institute for Quantum Computing, a Canada based research institute, received a grant of US$ 76 Mn for the development of quantum technology solutions. A quantum computing research hub - Networked Quantum Information Technologies was formed by the UK Government under the UK National Quantum Technologies Programme (UKNQTP). The quantum computing market in Asia Pacific (APAC) is expected to be commercialized by 2019. The growth of quantum computing would be mainly in industries such as healthcare & pharmaceuticals, power & energy, defence, banking & finance, chemicals and the list goes on. Many researchers working on this domain would be attending the conference to share their valuable works and this would be a perfect platform to share yours with the global community.

Track 10: Quantum Technology

Quantum technology is a new arena of engineering and physics. In quantum technology transitions some of the properties of quantum mechanics, especially quantum superposition, quantum entanglement and quantum tunnelling, into practical applications such as quantum sensing, quantum computing, quantum simulation, quantum cryptography, quantum imaging and quantum metrology. Quantum superposition states can be very sensitive to many external effects, such as electric, magnetic and gravitational fields; rotation, acceleration and time, and therefore can used to make very accurate sensors. Quantum secure correspondences are the methods which are anticipated to be 'quantum safe' in the approach of a quantum processing frameworks that could break current cryptography frameworks. One significant component of a quantum secure communication systems is expected to be Quantum key distribution, or 'QKD': a method of transmitting information using entangled light in a way that makes any interception of the transmission obvious to the user.

Track 11: Nuclear Physics

Nuclear physics is the field of science that studies about atomic nuclei, constituents and interactions. Nuclear Physics on the other hand, apprehensions itself with the particles of the nucleus called nucleons (protons & neutrons). The research in this field has led to many applications such as  nuclear power, nuclear weapons, nuclear medicine, nuclear magnetic resonance imaging. The modern nuclear physics includes nuclear fusion, nuclear fission, nuclear decay and Production of "heavy" elements using atomic number greater than five.

Track 12: Nuclear Quantum Physics

Quantum physics also known as quantum mechanics which includes the quantum field theory is a division of physics which describes the nature at the minimum scales of energy levels of subatomic particles and atoms. Quantum physics can release the separate performances of the subatomicparticles that consists all forms of matter (electrons, protons, neutrons, photons, and others). Heavy nucleus which contains hundreds of nucleons is treated as a quantum-mechanical one.

Track 13: Nuclear Reactor Physics

Nuclear reactor physics deals with the study and application of chain reaction to make a controlled rate of fission in a nuclear reactor for the production of energy. Many nuclear reactors use this chain reaction to bring a controlled rate of nuclear fission in fissile material which releases both energy and free neutrons. The reactor comprises of nuclear fuel, generally surrounded by a neutron moderator such as regular water, heavy water, graphite or zirconium hydride.

Track 14: Nuclear Engineering

Nuclear engineering is the division of engineering, which is the analysis (fission) as well as the arrangement (fusion) of atomic nuclei or the application of other sub-atomic physics, based on the ideologies of nuclear physics. Nuclear engineering deals with the application of nuclear energy which includes nuclear power plants, submarine propulsion systems, food production, nuclear weapons and radioactive-waste disposal facilities. The field also includes the study of medical and other applications of radiation, nuclear safety and the problems of nuclear proliferation.

Track 15: Nuclear Astrophysics

Nuclear Astrophysics is a combination of nuclear physics and astrophysics which studies about the nuclear reaction and nuclear-level processes that occur naturally in space. Nuclear astrophysics has the spectacular movement in modelling the structure and evolution of stars, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations.

Track 16: Nuclear Radioactive Decay

Radioactive decay is also known as nuclear decay and it occurs when an unsteady atom loses energy by emitting radiation such as alpha particle, beta particle, gamma rays or electron in the case of internal conversion. Radioactivity is the result of the decay or disintegration of unstable nuclei. This process of radioactive decay can be done using three primary methods; by spontaneous fission (splitting) into two fragments, a nucleus can change one of its neutrons into a proton with the done at the same time emission of an electron (beta decay), by emitting a helium nucleus (alpha decay).

Track 17: Nuclear Fission and Fusion

Nuclear fission and Nuclear fusion are dissimilar types of reactions that release due to the formation of nuclei with higher nuclear binding energy. Nuclear fission is also a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into lighter nuclei, which produces neutrons and photons and also releases a large amount of energy. Nuclear fusion is a reaction in which two or more atomic nuclei collide at very high energy to form one or more altered atomic nuclei and subatomic particles.


Market Analysis

Market Analysis:

Quantum Dots market to grow from USD 2.6 billion in 2018 to USD 8.5 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 27.0% during the forecast period. The major factors that are expected to be driving the market are the increasing demand for quantum dots in high-quality display devices, growing implementation of quantum dots in numerous applications due to their miniature property, and rising adoption of energy-efficient and less or non-toxic quantum dots in solar cells and photovoltaics. The objective of the report is to define, describe, and forecast the quantum dot market size based on product, material, vertical and region.       

“Quantum dot displays to dominate the quantum dots market during forecast period”

A QD display device (QDD) is a type of display technology used in flat-panel displays as an electronic visual display. QD nanocrystals are a part of the light emitting technology and consist of nano-scale crystals that are used in display technologies. QDs can be incorporated into a new-generation applications such as flat-panel TV screens, digital cameras, smartphones, gaming consoles, and personal digital assistant (PDA) devices. The increasing demand for displays with higher efficiency and enhanced color quality has exhibited the growth of QD displays.

“Consumer vertical to hold largest size of quantum dots market during forecast period”

Of all the verticals, the consumer vertical is expected to hold the largest market size during the forecast period. The increasing demand for superior display technologies and energy-efficient solutions is likely to drive the quantum dot display market growth. In addition, the unique characteristics of quantum dots such as high brightness, pure color, and wavelength tenability enable display designers to customize a spectrum of light to maximize both the efficiency and color performance of any display for incredible new user experience.

“APAC to hold largest market share and witness highest growth”

APAC is expected to hold the largest share of the quantum dots market between 2018 and 2023. Chinese, Japanese, and South Korean panel makers are investing more in producing more energy-efficient displays, which, in turn, also drives the market in Asia Pacific. In addition, the use quantum dots in developing innovative products at affordable prices would create growth opportunities for the players in the market in this region.


To Collaborate Scientific Professionals around the World

Conference Date June 15-16, 2020

For Sponsors & Exhibitors

Speaker Opportunity

Supported By

All accepted abstracts will be published in respective Conference Series LLC LTD International Journals.

Abstracts will be provided with Digital Object Identifier by